Details on Information about latest innovations and technological developments from IIT Roorkee

Sl. No.	Title of Technology/Innovation	Brief Description about the technology/Innovation (including details about the innovator/developer)	If patented (Yes/No) with patent number	Tech nolog y Read iness Level (1-9)	Benefits	Potential Applications	Pictures/Vid eos, if any showcasing the Technology (Weblink)
1.	A DEVICE FOR ANALYTE DETECTION AND METHOD THEREFOR	The proposed technology introduces a portable, point-of-care potentiometric device capable of detecting various analytes for on-site analysis. The device utilises electrochemical principles, specifically Cyclic Voltammetry, to measure the potential difference between a working electrode and a reference electrode of a modified screen-printed electrode, allowing for the quantification of specific analytes based on pre-calibrated values. This Innovative project presents the development and comprehensive evaluation of a portable potentiometric device engineered using cyclic voltammetry (CV) for biosensing applications. The readable device, designed with off-the-shelf components, offers high performance, high resolution, and cost-effectiveness for three-electrode electrochemical biosensors. It	Application no.: 202511047428	4	 Portability: Compact and lightweight design for easy transportation and use in various settings. Speed: Rapid detection times, enabling timely decisionmaking. User-friendliness: Intuitive interface and minimal training requirements. Cost-effectiveness: Affordable so- 	 Medical diagnostics: Disease screening, point-of-care testing, and patient monitoring. Environmental monitoring: pollutant detection, and environmental impact studies. Food safety: Detection of contaminants, allergens, and adulterants. Industrial process control: Quality assurance, process optimization, and product testing. 	https://drive. google.com/ drive/folders /1Vxh5NLS7 8CUcLO2C QtBNHYF WULC_y7e B?usp=shari ng

connects to a PC via USB, allow	ng	lution com-	
easy configuration of	ey	pared to tra-	
electrochemical parameters through	gh	ditional la-	
a user-friendly graphical u	ser	boratory methods.	
interface (GUI) created in Pyth	on.	methods.	
The GUI facilitates real-time of	nta		
capture and storage, enhancing	he		
usability of the device in vari	us		
research settings. Electrochem	cal		
characterization was conduc	ed		
using a range of modified electrod	es,		
including those incorporating ami	e-		
functionalized graphene (AG).	he		
results demonstrated the device	e's		
capability to effectively different	nte		
the electrochemical properties	of		
various materials. This porta	ole		
potentiometric device performar	ce,		
combined with its ease of use	nd		
cost-effectiveness, underscores	its		
potential as a valuable tool for fi	eld		
work and on-site analysis	in		
resource-limited settings. T	nis		
innovative device thus represent	a		
significant advancement	in		
electrochemical biosensing, w	th		
broad applications in clini	cal		
diagnostics and environment	tal		
monitoring.			

2.	A METHOD FOR	Inventors: Gopinath Packirisamy, Deepanshu Sharma, Ayush Tiwari, Manoj Kumar Baghel, Ashish Kalkal and Rangadhar Pradhan This invention presents an efficient	Yes	4	This invention	The invention would be	https://drive.
	METAL FREE TRIFLUOROETHYLA TION AND PERFLUOROALKYL ATION OF AMINES AND APPLICATION THEREOF	and scalable method for trifluoroethylation of amines using trifluoroacetic acid (TFA) and using borane as a reducing agent. It enables the functionalization of a wide range of amines, including aromatic, aliphatic amine, amino acids, dipeptides, and, in the case of perfluoro carboxylic acid under mild, energy-efficient conditions. The process offers high yields, selectivity, and minimal by-products, making it an environmentally friendly alternative to the traditional fluorination techniques that often require harsh reagents and conditions. Inventors: Debasis Banerjee and Tarun	Application no.: 202511049588		benefits users by offering a cost- effective, efficient, and scalable method for trifluoroethylated/per fluorinated amines, including insightful compounds like aliphatic amines, amino acids, and dipeptides. Pharmaceutical companies can produce fluorinated drug candidates with higher yields and selectivity, while agrochemical firms gain an edge in developing fluorinated pesticides. Specialty chemical manufacturers can create fluorinated molecules more sustainably, and custom synthesis providers can offer	valuable to academic researchers and postgraduate students in chemistry and biochemistry, particularly those studying fluorination techniques and bioactive molecule synthesis. Pharmaceutical companies developing fluorinated drug candidates and peptide therapeutics, agrochemical firms working on fluorinated pesticides, and specialty chemical manufacturers producing fluorinated intermediates would also benefit. Additionally, custom synthesis providers and businesses focused on green chemistry and sustainable manufacturing in the chemical industry would find the invention highly applicable.	google.com/f ile/d/1YJOcl eecnWNb5Q = F9lNkZNBIf 0Bk2GYK/vi ew?usp=sha ring

					eco-friendly		
					fluorination services.		
3.	A METHOD FOR N-METHYLATION OF AMINES USING A NI-BASED CATALYTIC SYSTEM	This invention presents a novel method for the N-methylation of amines using CO ₂ as a sustainable C1 source and ammonia borane as a mild reducing agent, catalyzed by an earth-abundant Ni-based system. The process operates under mild, environmentally friendly conditions and is compatible with a wide range of primary and secondary amines, including N-heterocycles and complex, drug-like molecules. It offers a cost-effective, scalable, and green alternative to traditional methods that rely on toxic methylating agents and expensive noble metals, making it highly valuable for pharmaceutical, agrochemical, and fine chemical applications Inventors: Debasis Banerjee and Tarun	Yes Application no.: 202511049589	4	This invention offers users significant benefits, including a safer and more environmentally friendly alternative to traditional methylation methods, reduced production costs through the use of inexpensive catalysts, and broad applicability across diverse substrates. Its mild conditions and high selectivity make it ideal for modifying complex molecules and enhancing efficiency in pharmaceutical development, chemical manufacturing, and research applications.	This invention would be valuable to pharmaceutical and agrochemical companies, fine chemical manufacturers, and contract research organizations seeking greener and more cost-effective synthetic methods. It would also benefit academic researchers and industrial chemists focused on sustainable catalysis, CO ₂ ,, utilization, and late-stage functionalization in drug development and materials science.	https://drive. google.com/ u/0/open?us p=forms we b&id=1GN8 8WmJCQzL h2ZyhdwPp JYxNERn6B fZy
4.	A METHOD OF SYNTHESIS OF PARACETAMOL USING COBALT NANOCATALYST	The present process involves a simple, economical, and recyclable catalytic route for the synthesis of paracetamol using earth abundant heterogeneous cobalt nanocatalyst. The first step involves the reduction of p-nitro phenol to p-amino phenol	Yes Application no.: 202511049590	4	(1) Nitration of p- chloro benzene leads to mixture of product and its reduction using precious metal catalyst increases the	The present protocol has the capability to reduce the market price of paracetamol by 60%.	https://drive. google.com/f ile/d/1KhPEj 4K8nEC65L RM6obzgHK m6I87SAnh/

		under neutral reaction condition where hydrogen gas is utilized for the clean reduction. In the second step, addition of acetic acid led to acetylation of p-amino phenol to give quantitative amount N-Acetyl-paraaminophenol (APAP), commonly known as Paracetamol. The solvent tetrahydrofuran and catalyst used can be recovered and reused for further reactions. The ICP-MS of the reaction aliquot of third time catalyst showed ppm level ingestion of cobalt into the reaction solution. Inventors: Debasis Banerjee and Shuvojit Haldar			expenses for the product development. Whereas our protocol uses non-precious metal catalyst for the reduction of p-nitro phenol to p-amino phenol. (2) The previous process for the paracetamol synthesis commonly uses acetic anhydride for acetylation of p-amino phenol where equal equivalent of acetate goes waste. But in our protocol, direct use of bio-mass derived acetic acid leads to product, N-Acetyl-para-aminophenol, paracetamol, generating only water as by-product.		view?usp=sh aring
5.	A METHOD FOR SYNTHESIZING N- FORMYLATED AMINES USING CO ₂ AS A GREEN FEEDSTOCK	This invention presents a novel, efficient method for the N-formylation of amines using carbon dioxide (CO ₂) as a sustainable C1 source, catalyzed by a nickel-based system. The process offers an ecofriendly alternative to traditional methods that rely on toxic and expensive reagents such as formic	Yes Application no.: 202511049591	4	This process avoids using expensive and highly air-sensitive pincer catalysts, which require a multistep synthetic process. The protocol also helps users to use simple reaction setup	Cost-effective and environmentally friendly alternative to traditional methods for synthesizing APIs (Active Pharmaceutical Ingredients), intermediates, and fine chemicals involving formylated	https://drive. google.com/f ile/d/1A5_ve olg55xZ6Xp q1LGNdZfV Bln7wSeM/v iew?usp=sha ring

		acid or paraformaldehyde. Utilizing nickel, an earth-abundant and costeffective transition metal, the catalytic system operates under mild reaction conditions with high selectivity and functional group tolerance. This method converts primary and secondary amines, nitrobenzenes, and amides into valuable formylated derivatives, which are essential for pharmaceuticals, agrochemicals, and specialty chemicals. Using this protocol, we successfully synthesized some special drug derivatives, including butamben, ciprofloxacin, lepidine derivatives, etc.			to carry out the N- formylation process, without the need to use complex experimental setups to store hydrogen gas.	amines. This invention offers compliance-friendly, sustainable alternatives to outdated methods for industries which have been pressured by environmental regulations to adopt greener practices.	
		Inventors: Debasis Banerjee and Tarun					
6.	A METHOD OF	The present protocol demonstrated	Yes	4	The inventions lead	The present protocol	https://drive.
6.	A METHOD OF SYNTHESIS OF BIS(PERFLUOROALK OXYIODO) BENZENE AND APPLICATION THEREOF	the first synthesis of bis(perfluoroalkoxyiodo)benzene derivatives using more sustainable and environmentally process using inexpensive and commercially available perfluoroalkylated acids. Further, more challenging late-stage functionalization of primary amides to perfluorinated amides were developed, which are quite expensive in nature. Therefore, this protocol will be highly useful for the	Application no.: 202511050104	4	to the use of common reagents for alkylation of amide which reduces overall cost of the production for the agrochemical and pharmaceutical derivatives synthesis. This drives economic growth through the inventions in	The present protocol demonstrated the first synthesis of bis(perfluoroalkoxyiodo) benzene derivatives using more sustainable and environmentally process using inexpensive and commercially available perfluoroalkylated acids. Further, more challenging late-stage functionalization of primary amides to	nttps://drive. google.com/f ile/d/1VE9Y yoDKR9OV7 LlAIJQu3qsg IJGy0CR- /view?usp=sh aring

		industries dealing with fluorinated amides. The present process involves a simple, economical, metal free route for the synthesis of Rfembedded functionalized amides. The protocol is tolerant to a range of sensitive functional groups and perfluoro acids.			medicine and public health	perfluorinated amides were developed, which are quite expensive in nature. Therefore, this protocol will be highly useful for the industries dealing with fluorinated amides.	
		Inventors: <u>Debasis Banerjee</u> and Shuvojit Haldar					
7.	SYSTEM AND METHOD FOR ENHANCING FAIRNESS IN IMAGING APPLICATIONS THROUGH MUTUAL CORRECTION AND GROUPWISE INTRA- CLASS SAMPLE INTERACTION	This innovation introduces a dual-branch deep learning architecture designed to ensure fairness in AI training without compromising performance or accuracy, especially across biased groups. The core technique involves intra-class image patch mixing, where patches from different samples of the same class are fused across branches to enhance diversity and reduce bias. Each branch specializes in learning from a different bias group, enabling mutual correction and fair knowledge transfer during training. The system has been validated across multiple data modalities and deep learning architectures, demonstrating both scalability and robust applicability in various AI tasks.	Yes Application no.: 202411037096	3	The proposed dual-branch deep learning architecture offers significant benefits in promoting fairness while maintaining or even enhancing model performance. By using intra-class image patch mixing and mutual correction between two biasfocused branches, the model learns more inclusive and representative features. This approach improves generalization, reduces bias-induced overfitting, and facilitates equitable knowledge transfer	This technology has wideranging applications across various sectors where fairness and performance are critical. In healthcare, it can ensure unbiased diagnostic predictions across different patient groups. In surveillance and security, it supports fair facial or behavioral recognition systems. Autonomous systems, such as drones and self-driving vehicles, can benefit from unbiased perception and decision-making. In finance, it enhances fairness in credit scoring and risk assessment models. The method is also well-suited for defense applications involving multi-sensor data	https://drive. google.com/f ile/d/1tVi1p Ngj9SMfeIw 9Hi8e0MRT OgQxbgrG/ view?usp=sh aring

8. Flexible infra-red	Inventors: Pravendra Singh, Anshul Pundhir and Balasubramanian Raman The invention is related to optical	Yes	4	across demographic or domain-specific groups. Additionally, the method is versatile and architecture-agnostic, meaning it can be easily integrated into existing AI models and scaled to larger datasets or tasks involving different data modalities such as images, text, or multimodal inputs.	classification, and in education technology, it can ensure fair evaluation in automated learning analytics and assessments. The high absorption at large	https://drive.
metasurface absorber for large incident angles	absorbers where flexible and low-cost infrared (IR) metasurface absorbers were designed and fabricated experimentally verified for large incidence angles. The spectral region of absorbance can be tuned from near-infrared (NIR) to long wavelength infrared (LWIR) region by changing the dielectric material and modifying the number of layers in the structure. The invented IR absorbers can be shaped in terms of both wavelength and incidence angle. The one-dimensional (1D) metasurface structure enhances the absorbance value and the use of nano-imprinting lithography technique followed by simple physical evaporation deposition (PVD) method makes the	Application no.: 202411038574	7	introduces a flexible metasurface absorber capable of maintaining high infrared (IR) absorbance at large incident angles, including neargrazing incidence. The flexible and costeffective metasurface absorbers (PA, BE, and MIM) are fabricated using nanoimprint lithography and demonstrate enhanced absorbance (up to 99%) at large incident angles (830).	incident angles and the flexibility of the structure makes them useful for real-world applications like infrared camouflage, smart windows, wearable health sensors, and passive radiative cooling.	Patent Demonstratio n_A flexible metasurface structure for

absorber simple and inexpensive.	The application of	large incident
Three types of absorbers are	these developed	angles.mp4
proposed in this work: (i) Plasmonic	absorbers around a	
absorber (PA): Thin film of any noble	detector can improve	
metal was deposited on 1D	the signal to noise	Video
metasurface structure. An absorption	ratio by absorbing the	included
peak in the near IR region was	unwanted signal	
observed due to the surface plasmon	incident at oblique	
resonance (SPR) at metal-air	angles. The	
interface. (ii) Berreman (BE) mode	developed flexible IR	
metasurface absorber: Thin film of a	absorbers are low-	
polar dielectric material was	cost and easy to make	
deposited on 1D metasurface	using nanoimprint	
structure. An enhanced absorption	lithography, which is	
peak in the LWIR region can be	suitable for large-	
observed due to Berreman effect at	scale production.	
the wavelength of longitudinal optic		
phonon mode for vanishing dielectric		
function (Re[ϵ d] \approx 0), when		
transverse magnetically (TM)		
polarized light is incident at non-zero		
angles. (iii) MIM absorber: metal-		
insulator-metal (MIM) layers were		
deposited on 1D metasurface		
structure. The thickness of middle I-		
layer plays an important role in MIM		
structure. For $I \leq 50$ nm, an		
absorption peak in the NIR region		
was observed due to the excitation of		
surface plasmons at metal-air		
interface al large incidence angle		
(830). For $I \ge 500$ nm, trapping of		
incident light in the middle dielectric		
layer occurs at relatively smaller		
incidence angle (30o). This leads to		
an absorption peak in the mid-IR		
(MIR) region results due to the		
coupling of surface plasmons,		

		surface phonons and FP-like modes.					
		Also, the use of					
		polydimethylsiloxane (PDMS)					
		substrate for all the above mentioned					
		absorber originates the flexibility of					
		the absorber. The experimental					
		results were further validated					
		theoretically using finite element					
		method (FEM) method on COMSOL					
		Multiphysics software. The high					
		absorbance, lost cost fabrication with					
		large-scale nanostructure and high					
		throughput of the metasurface					
		structure make the absorber a robust					
		candidate for applications in					
		photodetectors, thermal emitters and					
		thermal imaging applications.					
		Inventors: Sachin Kumar Srivastava					
		and Jhuma Pan					
9.	A SUSTAINABLE	The present disclosure relates to	Yes	9	The present subject	1. A sustainable, low-cost,	https://docs.
	ROOF-TOP	filtration of roof-top harvested			matter relates to a	single-stage vertical filter	google.com/
	HARVESTED	rainwater	Application no.:		sustainable roof-top	with easily accessible	document/d/
	RAINWATER	and, more particularly to a	202411044016		harvested	material	1zDfpRlbly7
	FILTRATION	sustainable roof-top harvested			rainwater filtration	2. A filter that provides a	HnnbsYURk
	SYSTEM BASED ON	rainwater filtration system			system based on low-	high filtration rate, resulting	3CzXNSwvb
	LOW-COST SINGLE	based on low-cost single stage			cost single stage	in filtered water suitable for	BNQt/edit?u
	STAGE VERTICAL	vertical filter. The present disclosure			vertical filter for	potable mass domestic	sp=sharing
	FILTER	specifically			providing potable	consumption	&ouid=1175
		focuses on fabricating a filter design			water for collective	3. A filter with more than	31627492426
		for rainwater filtration that can			use. The single stage	99% efficiency in the	334516&rtp
		provide safe			rapid sand filtration	removal of turbidity	of=true&sd=
		potable water for mass consumption.			system is provided	4. An appreciable overall	true
		The present disclosure also relates to			for improving the	quality of the water in terms	<u></u>
		various			quality of the	of its physio-chemical and	
		materials for storage and different			harvested rainwater	microbiological	
		storage technicalities after filtration			through	characteristics.	
i		5.51.65 .55111154111165 41161 11111411011	1	I	1 0 45.11		

		to check the sustainability with time. Inventors: Deepak Khare and Sakshi Gupta			rooftops by targeting physiochemical and microbiological properties.		
10.	ACCIDENTAL QUASI-BOUND STATES IN THE CONTINUUM WITH EXTREMELY HIGH QUALITY FACTORS IN VISIBLE RANGE: SENSING AND SWITCHING APPLICATIONS	The invention describes a method to engineer A-QBICs with extremely high quality-factors (Q-factors) in the visible spectrum using simple-to-fabricate, symmetric, and periodic all-dielectric nanostructures (1-D or 2-D). A-QBICs can be realized on both stiff and flexible substrates that are transparent to visible light. The resulting sharp A-QBICs enables ultra-high figure of merit (FoM) optical sensing and efficient optical switching. The simplicity of the design and potential fabrication, along with its tunability and compatibility with various all-dielectric materials and substrates, make it ideal for scalable integration in photonic devices for health and environmental sensing applications. The inventors are Prof. Sachin Kumar Srivastava (Associate Professor, Dept. of Physics, IIT Roorkee) and Swapnil Khurana (PhD Student, Dept. of Physics, IIT Roorkee).	Application no.: 202411046138	3	It enables ultra-high FoM sensing and efficient optical switching using simple-to-fabricate, symmetric and periodic all-dielectric nanostructures that too in visible range, along with tunability and compatibility with diverse all-dielectric materials and substrates (both stiff and flexible), thereby allowing its cost-effective mass production. It also allows easy integration into existing sensing platforms at both normal and oblique incidences.	This method can be used for various photonic applications like optical sensing and switching with ultra-high Q and FoM in various segments including healthcare, environmental monitoring, wearable sensors, etc.	https://iitraci n- my.sharepoin t.com/:v:/g/p ersonal/sachi n_srivastava ph_iitr_ac_in /ES6DTP7nr xlNvnGFcDs oH3UBFt3C _iRJ6Jnc1Ld VGfUX2A?e =wziHMp Video included

11.	MICROWAVE ASSISTED SYNTHESIS OF MANGANESE- MOLYBDENUM BASED NANOFERTILIZER IN AQUEOUS MEDIUM	Inventors: Sachin Kumar Srivastava and Swapnil Khurana A method to synthesize manganese and molybdenum based nanofertilizer. Their invention discloses a method for preparation of nanofertilizer formulation that relates to a microwave assisted aqueous based manganese molybdate nanofertilizer in aqueous medium to enhance crop yield. Aqueous medium reduces the toxicity and the application of urea provides alkaline environment to the solution throughout microwave process which is essential to form nanoparticles of Mn-Mo otherwise it will lead to the formation of Manganese-oxy-hydroxides. Low solubility was enhanced by calcinating the synthesized particles. This invention also provides a method to enhance the particle yield. Inventors: Nitin Khandelwal and Prayas Prasad	3	It can replace two salts based fertilizers to provide manganese and molybdenum in the fields. The formulation provides manganese and molybdenum simultaneously in the medium. Also it can tackle the problems associated with salt based fertilizers like rapid dissolution, leaching to the groundwater etc.	As the release kinetics done in different soil and irrigation waters, which ensures the slow and consistent release of the nutrients, make it a potential application as a nanofertilizer in the field.	https://drive. google.com/f ile/d/1hxht8t G4CCKN7N 7lNKCPJ8ez 1KSvJvnE/v iew?usp=sha ring
12.	Aerosol foam assisted nanostructured lipid carriers for the treatment of psoriasis	The invention pertains to pharmaceutical compositions for topical drug delivery and methods for their manufacture and usage. Specifically, composition relates to nanostructured lipid carriers with at least one pharmaceutically active	3	The present invention provides an aerosol foam-assisted NLC composition for the treatment of psoriasis having the following advantages:	The invention pertains to pharmaceutical compositions for topical drug delivery and methods for their manufacture and usage.	https://drive. google.com/ drive/folders /133y Y0JEAytscz NXtor9pkW

		compound, preferably leukotriene receptor antagonists, flavonoids, or combinations thereof, integrated into pressurized containers with foaming agents, allowing foam formation upon release. Inventors: Ramasare Prasad and Amit Kumar Srivastava			 maintains the smoothening and soothing effect on the skin. biodegradable and environment friendly. It is Non-irritant /Dermatologically safe for human skin for long-term use. 		s E2fPSQ?u sp=sharing
13.	A printed patterns of thin film heaters on a quartz substrate using silver nanoparticle ink and its method of printing	The present invention relates to the thin film heaters fabricated by direct ink writing method using silver nanoparticle ink on quartz substrate. Three different structures of thin film heaters are being fabricated, namely, serpentine, spiral, and combination of both spiral and serpentine. These structures help provide varied temperature distribution over the heater surface, while conserving costly ink material. Temperature distributions can be readily controlled by varying the patterns and the applied voltages. The printed thin film heater is a good	Yes Application no.: 202411065129	8	Light weight, Efficient and uniform heating, precise temperature control, rapid response, repeatable performance under cyclic heating and cooling cycle, good electrical conductivity, low processing temperature and compatibility with various substrates.	Flexible and Wearable Electronics, Gas Sensors (e.g., metal oxide gas sensors), Defogging Systems on automotive windshields, Low-Power Space Heating and biomedical devices.	https://drive. google.com/f ile/d/16YseRj 4vIPYInO1u cRUoWA92 MiXOulrA/vi ew?usp=shari ng https://drive. google.com/f ile/d/1Zvc4U B61LgySf8Z

		replacement for the conventional thin					CIWSwop19
		film heater fabricated by physical					<u>z-</u>
		vapour deposition. Printing helps in					FbMhNV/vi
		conserving costly precursor material,					ew?usp=sha
							ring
		is less expensive, takes less time for					
		fabrication and is versatile in					
		producing different designs without					
		the need for expensive masks. These					
		printed thin films can be calibrated					
		and used as heaters for gas sensing.					
		Inventors: Nikhila Patil, Sowmmya					
		Venkatesh, Parasuraman					Video
		Swaminathan and <u>Sumathi</u>					included
		<u>Parasuraman</u>					moradou
14.	Coated zinc anode for	This innovation pertaining to	Yes	4	Eco-friendly	Aqueous Zinc battery, Solar	
	zinc batteries and	aqueous zinc batteries aims to			materials, Low-cost,	energy storage, Grid	https://drive.
	process for preparation	enhance the performance of the zinc			Easy fabrication,	storage, Data power backup	google.com/f
	thereof	anode by applying a protective layer.	202511030128		Scaleup capability,		ile/d/1Wpq_
		A novel formulation comprising a			Enhanced anode life		xWuZMAY
		porous carbon derived from waste					UD38j9uSK
		biomass and non-toxic sulfur was					FJ6aTwU4l4
		developed to serve as the protective					44/view?usp
		layer. After initial cycling, this					<u>=sharing</u>
		protective layer is converted into a robust and conductive interface of					
		carbon/ZnS that enhances zinc ion					
		transport kinetics and effectively					
		reduces the hydrogen evolution					
		reaction and other water-based side					
		reaction occurring at the zinc anode.					
		In this way, this comprehensive					
		solution addresses the key challenges					
		associated with bare zinc anodes in					
		aqueous zinc batteries. Aligning with					

	the increasing demand for clean and green technologies, this innovation aims to improve the performance of aqueous zinc battery system that uses earth-abundant and non-toxic raw materials for both the anode and cathode. This technology is developed by Dinesh Patel, PhD student from Chemical Engineering Department and Dr. Ashwini Kumar Sharma, Associate Professor from Chemical Engineering Department. Inventors: Dinesh Patel and Ashwini Kumar Sharma					
15. Biodegradable biopesticide formulation and preparation thereof	The present invention relates to a biopesticide formulation that reduces the risk of pest resistance, offering a more effective and sustainable alternative to conventional pesticides. The present invention ensures healthier crops, increased yields, and a more resilient agricultural system, benefiting both farmers and the environment for years to come. The present invention discloses a biopesticide formulation, wherein said formulation comprises a plant oil, a biosurfactant, and a biosolvent. The proposed biopesticide was formulated using isothermal dilution method. Inventors: Diksha Vats, Rittika Ray, Debabrata Sircar and Vimal Kumar	Yes Application no.: 202511039181	3	A biodegradable formulation, which combines plant oil, biosurfactants, and biodegradable biosolvents. This unique blend effectively targets harmful pests, fungi, and bacteria while being safe for crops and the environment. Unlike chemical pesticides, this biopesticide significantly reduces environmental pollution and supports sustainable farming practices. It enhances soil health and promotes healthier food	Agriculture	https://drive. google.com/f ile/d/1L1kW XslawoPIbu 77tKnEtwU QHRzZnAu B/view?usp= sharing

					production, offering a safer alternative to traditional pesticides. The invention provides an ecofriendlier solution for pest management, benefiting both the environment and agricultural productivity, while ensuring long-term sustainability in farming practices.		
16.	A barnyard millet based edible straws and its method of preparation	The present invention relates to a barnyard millets based edible straws and its method of preparation. The edible straws have excellent mechanical, thermal, and water resistance through citric acid cross-linking. The process involves mixing barnyard millet flour, locust bean gum, and citric acid (CA) as a green cross-linker with water, followed by homogenization and cooking. The formed sheet was then rolled into straws and dried at room temperature for 10 to 12 hours. Inventors: Kirtiraj K. Gaikwad and Tejaswini Dhanaji Patil	Yes Application no.: 202511046631	3	The present invention provides healthy and sustainable alternatives to petroleum-based plastics and paper straws. It also provides edible straws having excellent mechanical, thermal, and water resistance through citric acid crosslinking.	The present invention relates to the barnyard millets-based edible straws and their method of preparation	https://drive. google.com/ drive/folders /1qbWDGQ qeJje27myM xoT0T a4aR 3Rbc- T?usp=shari ng